Domain obstkiste24.de kaufen?

Produkte zum Begriff Machine Learning ML:


  • Arduino Tiny Machine Learning Kit
    Arduino Tiny Machine Learning Kit

    Arduino Tiny Machine Learning Kit

    Preis: 59.95 € | Versand*: 4.95 €
  • SparkFun MicroMod Machine Learning Carrier Board
    SparkFun MicroMod Machine Learning Carrier Board

    SparkFun MicroMod Machine Learning Carrier Board

    Preis: 23.75 € | Versand*: 4.95 €
  • Raschka, Sebastian: Machine Learning Q and AI
    Raschka, Sebastian: Machine Learning Q and AI

    Machine Learning Q and AI , "An advanced exploration of machine learning and AI, with each chapter asking and answering a question from the field. Divided into five sections: deep learning and neural networks; computer vision; natural language processing; production and deployment; and predictive performance and model evaluation"-- , >

    Preis: 37.30 € | Versand*: 0 €
  • Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4
    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Preis: 49.30 € | Versand*: 4.95 €
  • Warum Deep Learning im Vergleich zu Machine Learning?

    Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.

  • Was ist Python Machine Learning?

    Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.

  • Ist Machine Learning bereits künstliche Intelligenz?

    Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.

  • Was ist der Unterschied zwischen Deep Learning und Machine Learning?

    Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht das Lernen von hierarchischen und komplexen Merkmalsdarstellungen, um automatisch Muster und Strukturen in Daten zu erkennen. Im Gegensatz dazu ist Machine Learning ein breiterer Begriff, der verschiedene Algorithmen und Techniken umfasst, um Computermodelle zu erstellen, die aus Daten lernen und Vorhersagen treffen können. Deep Learning ist also eine Teilmenge des Machine Learning.

Ähnliche Suchbegriffe für Machine Learning ML:


  • SparkFun Artemis Module, Low Power Machine Learning BLE Cortex-M4F
    SparkFun Artemis Module, Low Power Machine Learning BLE Cortex-M4F

    SparkFun Artemis Module, Low Power Machine Learning BLE Cortex-M4F

    Preis: 11.85 € | Versand*: 4.95 €
  • Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow (Géron, Aurélien)
    Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow (Géron, Aurélien)

    Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow , Aktualisierte und erweiterte 3. Auflage des Bestsellers zu TensorFlow und Deep Learning Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow  Mit zahlreiche Übungen und Lösungen Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln. In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten. Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, aktualisiert und erweitert, Erscheinungsjahr: 202309, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: Géron, Aurélien, Übersetzung: Rother, Kristian~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, aktualisiert und erweitert, Seitenzahl/Blattzahl: 876, Abbildungen: komplett in Farbe, Keyword: AI; Algorithmen; Artificial Intelligence; Data Science; Deep Learning; Geron; KI; Künstliche Intelligenz; Machine Learning; Maschinelles Lernen; Neuronale Netze; NumPy; Python; Statistische Datenanalyse; TensorFlow; matplotlib; scikit-learn, Fachschema: Data Mining (EDV)~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 239, Breite: 163, Höhe: 44, Gewicht: 1408, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2406797, Vorgänger EAN: 9783960091240 9783960090618, andere Sprache: 9781098125974, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0070, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 54.90 € | Versand*: 0 €
  • Bartok, Larissa: Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg
    Bartok, Larissa: Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg

    Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg , Analytics-Instrumente können dabei helfen, mehr über den Lern- und Studienerfolg von Studierenden herauszufinden und geeignete Maßnahmen zur Unterstützung von Studierenden abzuleiten. Zwei Projekte, die sich Fragen zum Thema Studienerfolg widmen, wurden vom österreichischen BMBWF im Rahmen der Ausschreibung "Digitale und soziale Transformation in der Hochschulbildung" kofinanziert. Die beiden Projekte "Learning Analytics- Studierende im Fokus" und "PASSt - Predictive Analytics Services für Studienerfolgsmanagement" fokussieren auf unterschiedliche Handlungsfelder und wurden zur Generierung von Synergieeffekten konzeptionell verzahnt, indem generische Herausforderungen gemeinsam bearbeitet und Lessons-Learned diskutiert wurden. Die Erkenntnisse der gemeinsamen Arbeitsgruppe mündeten in diese Arbeit, die Rahmen- und Gelingensbedingungen von Analytics-Projekten thematisiert, und anhand von exemplarischen Anwendungsszenarien eine Unterstützung bei der Implementierung bieten kann. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 27.90 € | Versand*: 0 €
  • Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron, Aurélien)
    Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron, Aurélien)

    Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow , This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. , > , Auflage: 3rd Edition, Erscheinungsjahr: 202211, Produktform: Kartoniert, Autoren: Géron, Aurélien, Auflage: 23003, Auflage/Ausgabe: 3rd Edition, Themenüberschrift: COMPUTERS / Computer Vision & Pattern Recognition~COMPUTERS / Natural Language Processing~COMPUTERS / Neural Networks, Fachschema: Database~Datenbank~Fuzzy Logik - Fuzzy Set~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI~Lernen~Mustererkennung~Neuronales Netz - Neuronaler Computer - Neurocomputer~Übersetzung, Fachkategorie: Neuronale Netze und Fuzzysysteme~Mustererkennung~Maschinelles Sehen, Bildverstehen, Text Sprache: eng, Verlag: O'Reilly Media, Verlag: O'Reilly Media, Länge: 233, Breite: 186, Höhe: 52, Gewicht: 1511, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Vorgänger: 2654375, Vorgänger EAN: 9781492032649 9781491962299, Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0080, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 72.36 € | Versand*: 0 €
  • Ist ein Machine Learning Engineer ein Ingenieur?

    Ja, ein Machine Learning Engineer ist ein Ingenieur. Sie haben in der Regel einen technischen Hintergrund und arbeiten an der Entwicklung und Implementierung von Machine Learning-Modellen und -Algorithmen. Sie nutzen ihre technischen Fähigkeiten, um Daten zu analysieren, Modelle zu trainieren und Lösungen für komplexe Probleme zu entwickeln.

  • Ist AWS der Standard im Machine Learning?

    AWS ist einer der führenden Anbieter von Cloud-Computing-Diensten, einschließlich Machine Learning. Es bietet eine breite Palette von ML-Diensten und Tools wie Amazon SageMaker und Amazon Rekognition, die von vielen Unternehmen genutzt werden. Obwohl AWS als Standard angesehen werden kann, gibt es auch andere Anbieter wie Google Cloud und Microsoft Azure, die ebenfalls starke ML-Funktionen bieten. Die Wahl des richtigen Anbieters hängt von den spezifischen Anforderungen und Präferenzen des Unternehmens ab.

  • Kennt sich jemand mit Machine Learning aus?

    Ja, es gibt viele Menschen, die sich mit Machine Learning auskennen. Machine Learning ist ein Teilgebiet der künstlichen Intelligenz, das sich mit der Entwicklung von Algorithmen und Modellen befasst, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Es gibt viele Experten und Forscher, die sich intensiv mit Machine Learning beschäftigen und in verschiedenen Bereichen wie der Medizin, der Finanzwelt oder der Robotik Anwendungen entwickeln.

  • Wie kann man einen Einstieg in Machine Learning finden?

    Um einen Einstieg in Machine Learning zu finden, empfiehlt es sich, grundlegende Kenntnisse in Mathematik und Statistik zu erwerben. Anschließend kann man sich mit den verschiedenen Algorithmen und Techniken des Machine Learning vertraut machen, indem man Bücher liest, Online-Kurse besucht oder an Projekten arbeitet. Es ist auch hilfreich, praktische Erfahrungen zu sammeln, indem man eigene Daten analysiert und Modelle trainiert.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.